• @[email protected]
      link
      fedilink
      English
      18 months ago

      There’s a sunk cost already spent for an ICE car that’s already been produced. There’s an opportunity cost to swapping to an EV immediately. My point is simply that the situations are complicated enough that the only reasonable “one size” approach for a heuristic to balance those costs is one along the lines of “replace your ICE car when it’s reached the end of its useful life, and replace it with an EV”.

      No, this probably won’t be the best overall. That requires individualization. Someone still clinging to a 40 year old gas guzzling truck would be better off scrapping it. Someone who bought a sedan in, like, 2017, it still has a few years of well performing life in it would do best to keep it til it dies and then replace with an EV.

        • @[email protected]
          link
          fedilink
          English
          18 months ago

          I specifically mentioned sunk cost because it can be fallacious. I was aiming to get ahead of that. Not every sunk cost is fallacious, and that’s why I went into depth about sunk costs vs opportunity costs.

          And again, on an INDIVIDUAL level I agree with you. Individuals don’t have that kind of impact on demand as something like a ban of ICE engines, or broad adoption of them to the point of masses of people looking to buy at the same time does.

          Individually, buy one as soon as it makes financial sense for you, ideally when you’d be buying a car anyway.

          Systemically, buy one when your car dies, keep your running machine for as long as possible.

          Specifically the opportunity costs I’m referring to are manufacturing related. Right now, producing EVs is more costly than producing ICE cars, in terms of carbon footprint. If too many people adopt too quickly, it results in more being produced while the manufacturing process is still shitty.

          There’s a problem with the “pass down the cars” thing too. At the end of that chain is still a car being decommissioned. If it’s still usable, that’s a higher net carbon footprint. A new EV still had to be produced for that chain of used car sales to go through.

            • @[email protected]
              link
              fedilink
              English
              18 months ago

              Go for it, or link me to where you did before. All I’m seeing is the math working in certain individual cases, not broadly at least not yet, and at best moving the emissions 2 or 3 steps down a chain of emissions.

              There will be a time when, broadly speaking, it’s best to just nuke your car and get an EV. That time is not there yet. It’s probably when the manufacturing emissions are roughly equal to those of ICE cars, and/or when there’s more renewable energy than coal. Please, though, show me math.

                • @[email protected]
                  link
                  fedilink
                  English
                  1
                  edit-2
                  8 months ago

                  Cool, some numbers. First off, looking over your math, it looks correct, so that’s good. The article seems to be a bit confusing, however, or you’re taking a best case scenario they don’t approach in the article. It states that an EV takes 8.8 tons of co2 to produce. It later states, however, “However, a BEV (battery electric vehicle) produces less harmful emissions over its entire life. The study found that a medium-sized petrol or diesel car produces around 24 tonnes of CO2 versus a BEV’s 18 tonnes” this seems to imply to me that we shouldn’t keep emissions at 0 throughout the EV’s lifetime? I would assume this additional tonnage is from less-clean electrical generation methods and overall maintenance requirements.

                  If this is the case, it paints a bit different of a picture, more in line with what I said - that you should buy one if you’re going to buy a car anyway, and drive yours. What the numbers provided does give us now, though, is a point at which the sunk cost DOES become too large, and that seems to be a car in the age range of 10-15 years at present.

                  Please, if I’ve misunderstood something with the article, correct me, and thank you for the write up with sources.