I have many conversations with people about Large Language Models like ChatGPT and Copilot. The idea that “it makes convincing sentences, but it doesn’t know what it’s talking about” is a difficult concept to convey or wrap your head around. Because the sentences are so convincing.

Any good examples on how to explain this in simple terms?

Edit:some good answers already! I find especially that the emotional barrier is difficult to break. If an AI says something malicious, our brain immediatly jumps to “it has intent”. How can we explain this away?

  • @[email protected]
    link
    fedilink
    238 months ago

    Not an ELI5, sorry. I’m an AI PhD, and I want to push back against the premises a lil bit.

    Why do you assume they don’t know? Like what do you mean by “know”? Are you taking about conscious subjective experience? or consistency of output? or an internal world model?

    There’s lots of evidence to indicate they are not conscious, although they can exhibit theory of mind. Eg: https://arxiv.org/pdf/2308.08708.pdf

    For consistency of output and internal world models, however, their is mounting evidence to suggest convergence on a shared representation of reality. Eg this paper published 2 days ago: https://arxiv.org/abs/2405.07987

    The idea that these models are just stochastic parrots that only probabilisticly repeat their training data isn’t correct, although it is often repeated online for some reason.

    A little evidence that comes to my mind is this paper showing models can understand rare English grammatical structures even if those structures are deliberately withheld during training: https://arxiv.org/abs/2403.19827

    • @[email protected]
      link
      fedilink
      238 months ago

      The idea that these models are just stochastic parrots that only probabilisticly repeat their training data isn’t correct

      I would argue that it is quite obviously correct, but that the interesting question is whether humans are in the same category (I would argue yes).

      • @[email protected]
        link
        fedilink
        12
        edit-2
        8 months ago

        People sometimes act like the models can only reproduce their training data, which is what I’m saying is wrong. They do generalise.

        During training the models are trained to predict the next word, but after training the network is always effectively interpolating between the training examples it has memorised. But this interpolation doesn’t happen in text space but in a very high dimensional abstract semantic representation space, a ‘concept space’.

        Now imagine that you have memorised two paragraphs that occupy two points in concept space. And then you interpolate between them. This gives you a new point, potentially unseen during training, a new concept, that is in some ways analogous to the two paragraphs you memorised, but still fundamentally different, and potentially novel.

    • @[email protected]
      link
      fedilink
      158 months ago

      I really appreciate you linking studies about this topic, as finding this kind of research can be daunting. Those looks like really interesting reads.