Surprised pikachu face

  • @[email protected]
    link
    fedilink
    English
    13 months ago

    Exactly. I see AI as a tool to automate the boring parts, if you try to automate the hard parts, you’re going to have a bad time.

    Take the time to learn the tools you use thoroughly, and then you can turn to AI to make your use of those tools more efficient. If I’m learning woodworking, for example, I’m going to learn to use hand tools first before using power tools, but there’s no way I’m sticking to hand tools when producing a lot of things. Programming isn’t any different, I’ll learn the language and its idioms as deeply as I can, and only then will I turn to things like AI to spit out boilerplate to work from.

      • @[email protected]
        link
        fedilink
        English
        13 months ago

        I’m not sure how to succinctly do that.

        When I learn a new language, I:

        1. go through whatever tutorial is provided by the language developers - for Rust, that’s The Rust Programming Language, for Go, it’s Tour of Go and Effective Go
        2. build something - for Go, this was a website, and for Rust it was a Tauri app (basically a website); it should be substantial enough to exercise the things I would normally do with the language, but not so big that I won’t finish
        3. read through substantial portions of the standard library - if this is minimal (e.g. in Rust), read through some high profile projects
        4. repeat 2 & 3 until I feel confident I understand the idioms of the language

        I generally avoid setting up editor tooling until I’ve at least run through step 3, because things like code completion can distract from the learning process IMO.

        Some books I’ve really enjoyed (i.e. where 1 doesn’t exist):

        • The C Programming Language - by Brian Kernighan and Dennis Richie
        • Programming in Lua - by Roberto Ierusalimschy
        • Learn You a Haskell for Great Good - by Miran Lipovača (available free online)

        But regardless of the form it takes, I appreciate a really thorough introduction to the language, followed by some experimentation, and then topped off with some solid, practical code examples. I generally allow myself about 2 weeks before expecting to write anything resembling production code.

        These days, I feel confident in a dozen or so programming languages (I really like learning new languages), and I find that thoroughly learning each has made me a better programmer.

        • @[email protected]
          link
          fedilink
          English
          13 months ago

          Thanks for that, was quite interesting and I agree that completion too early (even… in general) can be distracting.

          I did mean about AI though, how you manage to integrate it in your workflow to “automate the boring parts” as I’m curious which parts are “boring” for you and which tools you actual use, and how, to solve the problem. How in particular you are able to estimate if it can be automated with AI, how long it might take, how often you are correct about that bet, how you store and possibly share past attempts to automate, etc.

          • @[email protected]
            link
            fedilink
            English
            13 months ago

            I honestly don’t use it much, but so far, the most productive uses are:

            • generate some common structure/algorithm - web app, CLI program, recursive function, etc
            • search documentation - I may not know what the function/type is, but I can describe it
            • generate documentation - list arguments, return types, etc

            But honestly, the time I save there honestly isn’t worth fighting with the AI most of the time, so I’ll only do it if I’m starting up a big greenfield project and need something up and going quickly. That said, there are some things I refuse to use AI for:

            • testing - AI may be able to get high coverage, but I don’t think it can produce high quality tests
            • business logic - the devil is in the details, and I don’t trust AI with details
            • producing documentation - developers hate writing documentation, which is precisely why devs should be the ones to do it; if AI could do it, other devs could just use AI to generate it, but good docs will do far more than what AI can intuit
            • @[email protected]
              link
              fedilink
              English
              23 months ago

              Super, thanks again for taking the time to do so.

              I can’t remember if I shared this earlier but I’m jolting down notes on the topic in https://fabien.benetou.fr/Content/SelfHostingArtificialIntelligence so I do also invest time on the topic. Yet my results have also been… subpar so I’m asking as precisely as I can how others actually benefit from it. I’m tired of seeing posts with grand claims that, unlike you, only talk about the happy path in usage. Still, I’m digging not due to skepticism as much as trying to see what can actually be leveraged, not to say salvaged. So yes, genuine feedback like yours is quite precious.,

              I do seem to hear from you and others that to kickstart what would be a blank project and get going it can help. Also that for whatever is very recurrent AND popular, like common structures, it can help.

              My situation though is in prototyping where documentation is sparse, if even existent, and working examples are very rare. So far it’s been a bust quite often.

              Out of curiosity, which AI tools specifically do you use and do you pay for them?

              PS: you mention documentation is both cases, so I imagine it’s useful when it’s very structured and when the user can intuit most of how something works, closer to a clearly named API with arguments than explaining the architecture of the project.

              • @[email protected]
                link
                fedilink
                English
                2
                edit-2
                3 months ago

                Out of curiosity, which AI tools specifically do you use and do you pay for them?

                Just whatever is free, so no, I don’t pay for them for two reasons:

                • my boss doesn’t allow AI to have access to our codebase
                • I honestly don’t find enough value to actually pay

                So I’ll just find something with a free tier or trial and generate a little bit of code or something. Or I’ll use the AI feature in a search engine to help me get search terms for relevant documentation (i.e. list libraries that do X), and then I’ll actually read the documentation. I have coworkers who use it for personal projects (not sure what they use), and that’s also part of what I’ve listed above (i.e. the generating documentation part).

                But I very rarely use AI, because I very rarely start projects from scratch. 99% of my work is updates to existing projects, so it’s really not that useful.