This website contains age-restricted materials including nudity and explicit depictions of sexual activity.
By entering, you affirm that you are at least 18 years of age or the age of majority in the jurisdiction you are accessing the website from and you consent to viewing sexually explicit content.
Based on one of your comments clarifying what you’re wondering, I don’t know that this helps you in what you’re looking for, but the “OMG particle” came to my mind. It was traveling at such high energy when it hit our atmosphere that…
…
…
I don’t know if that cascade is the same as the Cherenkov radiation it produced, but that radiation is how they detected this particle, and it’s interesting a.f.
I.e., (layman’s understanding here) the particle, having a dual particle- and wave-like nature, is propagating through the vacuum of space “close” to the max speed of propagation of causality itself. As it encounters a medium, our atmosphere, it is going faster than causality itself can possibly propagate through that medium. But the energy is still there and isn’t going to just vanish, so it has to split out into multiple particles that would, with their fraction of the original energy, then be able to propagate through the medium. Or something amazing like that?Edit: My layman’s understanding of Cherenkov radiation requires a bigger disclaimer, like a strike-through. :)
I have never heard that causality slows down in a medium. I understand the use of “speed of causality” to refer to the speed of light in a vacuum, and while I’m aware that light slows down in air, water, etc I’m not sure it has ever been shown that causality itself slows down. My understanding is that also light slows down just because it’s captured and re-emitted by other particles. Though I would be happy to learn something new if my understanding is wrong.
That said, the OMG particle stuff was very interesting, thank you for sharing.
Good point, I think you’re right. I’ve probably been making an unsupported leap in logic there.