This website contains age-restricted materials including nudity and explicit depictions of sexual activity.
By entering, you affirm that you are at least 18 years of age or the age of majority in the jurisdiction you are accessing the website from and you consent to viewing sexually explicit content.
So, if we had a machine that could “see” without photons, we could observe an electron directly? (I know nothing about this)
We have such devices, unfortunately they tend to use electrons instead (electron microscopes). We also have devices that just work by measuring the electromagnetic field (atomic force microscopes). Again though, to measure the field you have to interact with it, so you can’t do it immaculately.
Electrons are especially hard because they are so incredibly light yet intensely charged compared to everything that can actually interact with them.
When talking about particles, the interaction very rarely involves actual contact, as that tends result in some manner of combination. Two electrons for instance don’t really bounce off each other, they just get close, interact and then diverge. If a photon ‘hits’ an electron it gets absorbed and a new one is emitted. Look up Feynman Diagrams if you want to see some detail to this. I don’t think you need any deep knowledge to benefit from looking at them, they are really quite an elegant way to visually show the mathematics.