What concepts or facts do you know from math that is mind blowing, awesome, or simply fascinating?
Here are some I would like to share:
- Gödel’s incompleteness theorems: There are some problems in math so difficult that it can never be solved no matter how much time you put into it.
- Halting problem: It is impossible to write a program that can figure out whether or not any input program loops forever or finishes running. (Undecidablity)
The Busy Beaver function
Now this is the mind blowing one. What is the largest non-infinite number you know? Graham’s Number? TREE(3)? TREE(TREE(3))? This one will beat it easily.
- The Busy Beaver function produces the fastest growing number that is theoretically possible. These numbers are so large we don’t even know if you can compute the function to get the value even with an infinitely powerful PC.
- In fact, just the mere act of being able to compute the value would mean solving the hardest problems in mathematics.
- Σ(1) = 1
- Σ(4) = 13
- Σ(6) > 101010101010101010101010101010 (10s are stacked on each other)
- Σ(17) > Graham’s Number
- Σ(27) If you can compute this function the Goldbach conjecture is false.
- Σ(744) If you can compute this function the Riemann hypothesis is false.
Sources:
- YouTube - The Busy Beaver function by Mutual Information
- YouTube - Gödel’s incompleteness Theorem by Veritasium
- YouTube - Halting Problem by Computerphile
- YouTube - Graham’s Number by Numberphile
- YouTube - TREE(3) by Numberphile
- Wikipedia - Gödel’s incompleteness theorems
- Wikipedia - Halting Problem
- Wikipedia - Busy Beaver
- Wikipedia - Riemann hypothesis
- Wikipedia - Goldbach’s conjecture
- Wikipedia - Millennium Prize Problems - $1,000,000 Reward for a solution
I came here to find some cool, mind-blowing facts about math and have instead confirmed that I’m not smart enough to have my mind blown. I am familiar with some of the words used by others in this thread, but not enough of them to understand, lol.
Same here! Great post but I’m out! lol
Nonsense! I can blow both your minds without a single proof or mathematical symbol, observe!
There are different sizes of infinity.
Think of integers, or whole numbers; 1, 2, 3, 4, 5 and so on. How many are there? Infinite, you can always add one to your previous number.
Now take odd numbers; 1, 3, 5, 7, and so on. How many are there? Again, infinite because you just add 2 to the previous odd number and get a new odd number.
Both of these are infinite, but the set of numbers containing odd numbers is by definition smaller than the set of numbers containing all integers, because it doesn’t have the even numbers.
But they are both still infinite.
Your fact is correct, but the mind-blowing thing about infinite sets is that they go against intuition.
Even if one might think that the number of odd numbers is strictly less than the number of all natural numbers, these two sets are in fact of the same size. With the mapping n |-> 2*n - 1 you can map each natural number to a different odd number and you get every odd number with this (such a function is called a bijection), so the sets are per definition of the same size.
To get really different “infinities”, compare the natural numbers to the real numbers. Here you can’t create a map which gets you all real numbers, so there are “more of them”.
I may be wrong or have misunderstood what you said but the sets of natural numbers and odd numbers have the same size/cardinality. If there exists a bijection between the two sets then they have the same size.
f(x) = 2x + 1 is such a bijection
For the same reason, N, Z and Q have the same cardinality. The fact that each one is included in the next ones doesn’t mean their size is different.
Agree. Uncountable infinities are much more mind blowing. It was an interesting journey realising first that everything like time and distance are continuous when learning math the then realising they’re not when learning physics.
Both of these are infinite, but the set of numbers containing odd numbers is by definition smaller than the set of numbers containing all integers, because it doesn’t have the even numbers.
This is provably false - the two sets are the same size. If you take the set of all integers, and then double each number and subtract one, you get the set of odd numbers. Since you haven’t removed or added any elements to the initial set, the two sets have the same size.
The size of this set was named Aleph-zero by Cantor.
There was a response I left in the main comment thread but I’m not sure if you will get the notification. I wanted to post it again so you see it
Response below
Please feel free to ask any questions! Math is a wonderful field full of beauty but unfortunately almost all education systems fail to show this and instead makes it seem like raw robotic calculations instead of creativity.
Math is best learned visually and with context to more abstract terms. 3Blue1Brown is the best resource in my opinion for this!
Here’s a mindblowing fact for you along with a video from 3Blue1Brown. Imagine you are sliding a 1,000,000 kg box and slamming it into a 1 kg box on an ice surface with no friction. The 1 kg box hits a wall and bounces back to hit the 1,000,000 kg box again.
The number of bounces that appear is the digits of Pi. Crazy right? Why would pi appear here? If you want to learn more here’s a video from the best math teacher in the world.
That’s so cool! Thanks for the reply and the link.
Please feel free to ask any questions! Math is a wonderful field full of beauty but unfortunately almost all education systems fail to show this and instead makes it seem like raw robotic calculations instead of creativity.
Math is best learned visually and with context to more abstract terms. 3Blue1Brown is the best resource in my opinion for this!
Here’s a mindblowing fact for you along with a video from 3Blue1Brown. Imagine you are sliding a 1,000,000 kg box and slamming it into a 1 kg box on an ice surface with no friction. The 1 kg box hits a wall and bounces back to hit the 1,000,000 kg box again.
The number of bounces that appear is the digits of Pi. Crazy right? Why would pi appear here? If you want to learn more here’s a video from the best math teacher in the world.
Thanks! I appreciate the response. I’ve seen some videos on 3blue1brown and I’ve really enjoyed them. I think if I were to go back and fill in all the blank spots in my math experience/education I would enjoy math quite a bit.
I don’t know why it appears here or why I feel this way, but picturing the box bouncing off the wall and back, losing energy, feels intuitively round to me.
Multiply 9 times any number and it always “reduces” back down to 9 (add up the individual numbers in the result)
For example: 9 x 872 = 7848, so you take 7848 and split it into 7 + 8 + 4 + 8 = 27, then do it again 2 + 7 = 9 and we’re back to 9
It can be a huge number and it still works:
9 x 987345734 = 8886111606
8+8+8+6+1+1+1+6+0+6 = 45
4+5 = 9
Also here’s a cool video about some more mind blowing math facts
I suspect this holds true to any base x numbering where you take the highest valued digit and multiply it by any number. Try it with base 2 (1), 4 (3), 16 (F) or whatever.
11 X 11 = 121
111 X 111 = 12321
1111 X 1111 = 1234321
11111 X 11111 = 123454321
111111 X 1111111 = 12345654321
You could include 1 x 1 = 1
But thats so cool. Maths is crazy.
holt shit
Amazing in deed!
Just a small typo in the very last factor
1111111
.
Goldbach’s Conjecture: Every even natural number > 2 is a sum of 2 prime numbers. Eg: 8=5+3, 20=13+7.
https://en.m.wikipedia.org/wiki/Goldbach’s_conjecture
Such a simple construct right? Notice the word “conjecture”. The above has been verified till 4x10^18 numbers BUT no one has been able to prove it mathematically till date! It’s one of the best known unsolved problems in mathematics.
Wtf !
How can you prove something in math when numbers are infinite? That number you gave if it works up to there we can call it proven no? I’m not sure I understand
There are many structures of proof. A simple one might be to prove a statement is true for all cases, by simply examining each case and demonstrating it, but as you point out this won’t be useful for proving statements about infinite cases.
Instead you could assume, for the sake of argument, that the statement is false, and show how this leads to a logical inconsistency, which is called proof by contradiction. For example, Georg Cantor used a proof by contradiction to demonstrate that the set of Natural Numbers (1,2,3,4…) are smaller than the set of Real Numbers (which includes the Naturals and all decimal numbers like pi and 69.6969696969…), and so there exist different “sizes” of infinity!
For a method explicitly concerned with proofs about infinite numbers of things, you can try Proof by Mathematical Induction. It’s a bit tricky to describe…
- First demonstrate that a statement is true in some 1st base case.
- Then demonstrate that if it holds true for the abstract Nth case, then it necessarily holds true for the (N+1)th case (by doing some clever rearranging of algebra terms or something)
- Therefore since it holds true for the 1th case, it must hold true for the (1+1)th case = the 2th case. And since it holds true for the 2th case it must hold true for the (2+1)=3th case. And so on ad infinitum.
Wikipedia says:
Mathematical induction can be informally illustrated by reference to the sequential effect of falling dominoes.
Bear in mind, in formal terms a “proof” is simply a list of true statements, that begin with axioms (which are true by default) and rules of inference that show how each line is derived from the line above.
Very cool and fascinating world of mathematics!
Just to add to this. Another way could be to find a specific construction. If you could for example find an algorithm that given any even integer returns two primes that add up to it and you showed this algorithm always works. Then that would be a proof of the Goldbach conjecture.
As you said, we have infinite numbers so the fact that something works till 4x10^18 doesn’t prove that it will work for all numbers. It will take only one counterexample to disprove this conjecture, even if it is found at 10^100. Because then we wouldn’t be able to say that “all” even numbers > 2 are a sum of 2 prime numbers.
So mathematicians strive for general proofs. You start with something like: Let n be any even number > 2. Now using the known axioms of mathematics, you need to prove that for every n, there always exists two prime numbers p,q such that n=p+q.
Would recommend watching the following short and simple video on the Pythagoras theorem, it’d make it perfectly clear how proofs work in mathematics. You know the theorem right? For any right angled triangle, the square of the hypotenuse is equal to the sum of squares of both the sides. Now we can verify this for billions of different right angled triangles but it wouldn’t make it a theorem. It is a theorem because we have proved it mathematically for the general case using other known axioms of mathematics.
That’s a really great question. The answer is that mathematicians keep their statements general when trying to prove things. Another commenter gave a bunch of examples as to different techniques a mathematician might use, but I think giving an example of a very simple general proof might make things more clear.
Say we wanted to prove that an even number plus 1 is an odd number. This is a fact that we all intuitively know is true, but how do we know it’s true? We haven’t tested every single even number in existence to see that itself plus 1 is odd, so how do we know it is true for all even numbers in existence?
The answer lies in the definitions for what is an even number and what is an odd number. We say that a number is even if it can be written in the form 2n, where n is some integer, and we say that a number is odd if it can be written as 2n+1. For any number in existence, we can tell if it’s even or odd by coming back to these formulas.
So let’s say we have some even number. Because we know it’s even, we know we can write it as 2n, where n is an integer. Adding 1 to it gives 2n+1. This is, by definition, an odd number. Because we didn’t restrict at the beginning which even number we started with, we proved the fact for all even numbers, in one fell swoop.
Seeing mathematics visually.
I am a huge fan of 3blue1brown and his videos are just amazing. My favorite is linear algebra. It was like an out of body experience. All of a sudden the world made so much more sense.
His video about understanding multiple dimensions was what finally made it click for me
The square of any prime number >3 is one greater than an exact multiple of 24.
For example, 7² = 49= (2 * 24) + 1
Does this really hold for higher values? It seems like a pretty good way of searching for primes esp when combined with other approaches.
Every prime larger than 3 is either of form 6k+1, or 6k+5; the other four possibilities are either divisible by 2 or by 3 (or by both). Now (6k+1)² − 1 = 6k(6k+2) = 12k(3k+1) and at least one of k and 3k+1 must be even. Also (6k+5)² − 1 = (6k+4)(6k+6) = 12(3k+2)(k+1) and at least one of 3k+2 and k+1 must be even.
I’ve read books about prime numbers and I did not know this.
deleted by creator
I don’t get it,
5² = 25 != (2 * 24) + 1
11² = 121 != (2 * 24) + 1
Could you please help me understand, thanks!
5² = 25 = (1 * 24) + 1
11² = 121 = (5 * 24) + 1
The key thing is that
p² = 24n + 1
(forp
greater than 3).Not 2 * 24, but x * 24.
So 5^2 = 1 * 24 +1
11^2 = 5 * 24 + 1
Imagine a soccer ball. The most traditional design consists of white hexagons and black pentagons. If you count them, you will find that there are 12 pentagons and 20 hexagons.
Now imagine you tried to cover the entire Earth in the same way, using similar size hexagons and pentagons (hopefully the rules are intuitive). How many pentagons would be there? Intuitively, you would think that the number of both shapes would be similar, just like on the soccer ball. So, there would be a lot of hexagons and a lot of pentagons. But actually, along with many hexagons, you would still have exactly 12 pentagons, not one less, not one more. This comes from the Euler’s formula, and there is a nice sketch of the proof here: .
You’re missing your link, homie!
It seems that I can’t see the link from 0.18.3 instances somehow. Maybe one of these will work: https://math.stackexchange.com/a/18347 https://math.stackexchange.com/a/18347
https://math.stackexchange.com/a/18347
Borsuk-Ulam is a great one! In essense it says that flattening a sphere into a disk will always make two antipodal points meet. This holds in arbitrary dimensions and leads to statements such as “there are two points along the equator on opposite sides of the earth with the same temperature”. Similarly one knows that there are two points on the opposite sides (antipodal) of the earth that both have the same temperature and pressure.
Also honorable mentions to the hairy ball theorem for giving us the much needed information that there is always a point on the earth where the wind is not blowing.
Seeing I was a bit heavy on the meteorological applications, as a corollary of Borsuk-Ulam there is also the ham sandwich theorem for the aspiring hobby chefs.
Godel’s incompleteness theorem is actually even more subtle and mind-blowing than how you describe it. It states that in any mathematical system, there are truths in that system that cannot be proven using just the mathematical rules of that system. It requires adding additional rules to that system to prove those truths. And when you do that, there are new things that are true that cannot be proven using the expanded rules of that mathematical system.
"It’s true, we just can’t prove it’.
Incompleteness doesn’t come as a huge surprise when your learn math in an axiomatic way rather than computationally. For me the treacherous part is actually knowing whether something is unprovable because of incompleteness or because no one has found a proof yet.
Thanks for the further detail!
As an engineer, i dont know how to feel about this. On the one hand, 19.99999 = 20. But on the other hand, 3^3 - 3 = 24.
you need a space before the second pi
Oh fuck you. I’m going to insert this in place of 20 in some formula and see people have breakdowns.
Euler’s identity is pretty amazing:
e^iπ + 1 = 0
To quote the Wikipedia page:
Three of the basic arithmetic operations occur exactly once each: addition, multiplication, and exponentiation. The identity also links five fundamental mathematical constants:[6]
The number 0, the additive identity.
The number 1, the multiplicative identity.
The number π (π = 3.1415…), the fundamental circle constant.
The number e (e = 2.718…), also known as Euler’s number, which occurs widely in mathematical analysis.
The number i, the imaginary unit of the complex numbers.The fact that an equation like that exists at the heart of maths - feels almost like it was left there deliberately.
A simple one: Let’s say you want to sum the numbers from 1 to 100. You could make the sum normally (1+2+3…) or you can rearrange the numbers in pairs: 1+100, 2+99, 3+98… until 50+51 (50 pairs). So you will have 50 pairs and all of them sum 101 -> 101*50= 5050. There’s a story who says that this method was discovered by Gauss when he was still a child in elementary school and their teacher asked their students to sum the numbers.
Quickly a game of chess becomes a never ever played game of chess before.
Related: every time you shuffle a deck of cards you get a sequence that has never happened before. The chance of getting a sequence that has occurred is stupidly small.
Most of the time, but only as long as the shuffle is actually random. A perfect riffle shuffle on a brand new deck will get you the same result every time, and 8 perfect riffles on a row get you back to where you started.
I’m guessing this is more pronounced at lower levels. At high level chess, I often hear commentators comparing the moves to their database of games, and it often takes 20-30 moves before they declare that they have now reached a position which has never been reached in a professional game. The high level players have been grinding openings and their counters and the counters to the counters so deeply that a lot of the initial moves can be pretty common.
Also, high levels means that games are narrowing more towards the “perfect” moves, meaning that repetition from existing games are more likely.
Oh yes I agree totally!
At those (insane) levels “everyone” knows the “best” move after the choice of opening and for a long time.
But for the millions of games played every day, I guess it’s a bit less :-)
To me, personally, it has to be bezier curves. They’re not one of those things that only real mathematicians can understand, and that’s exactly why I’m fascinated by them. You don’t need to understand the equations happening to make use of them, since they make a lot of sense visually. The cherry on top is their real world usefulness in computer graphics.
How Gauss was able to solve 1+2+3…+99+100 in the span of minutes. It really shows you can solve math problems by thinking in different ways and approaches.
50*101?
Yep. N * (n + 1) / 2.
You can think of it as.
1 + 2 + 3 + 4 ... 100 + 100 + 99 + 98 + 97 + 1
101 + 101 + 101 ... 101 = 2 * sum(1+2+3...100)